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Abstract
A new version of the Bäcklund–Darboux transformation for the matrix
Kadomtsev–Petviashvili (KP) equation is used to construct and study
explicit multi-parameter solutions and wavefunctions (in terms of the matrix
exponents). A class of the self-adjoint non-singular solutions of KP I is
introduced using the controllability notion from the system theory. A subclass
of the rationally decaying self-adjoint non-singular solutions is studied, in
particular. Several results prove new in the scalar case also.

PACS numbers: 02.30.Ik, 03.65.Ge, 05.45.Yv, 02.10Yn, 02.30.Tb

1. Introduction

This paper deals with a matrix analogue of the Kadomtsev–Petviashvili equation (the matrix
KP equation)

ut + uxxx − 3(uux + uxu) + α2ωy = α(uω − ωu) ωx = 3uy (1.1)

where u(x, t, y) and ω(x, t, y) are m × m matrix functions, ut = ∂u
∂t

, and α �= 0 is a constant
scalar. If m = 1, then the right-hand side of equation (1.1) turns to zero and we obtain the
already classical KP equation. L,A pairs for the KP equation have been constructed in [34]
and [9]. A detailed discussion of the explicit solutions can be found in [2, 19, 32]. The
matrix KP equation, its integrability and solutions have been studied, for instance, in [6, 17].
The well-known Bäcklund–Darboux transformations (BDTs) are widely used to construct and
study explicit solutions of the KP equation (see [1, 3, 5, 15, 18, 23, 35] and references therein).
For the important modifications and generalizations of the BDT see, for instance, [8, 10, 11,
13, 18, 19, 21, 33]. (See also a recent paper [7] for results and references on the BDT and
spectral theory.)
1 Corresponding address: Belova 30, korp. 1, kv. 4, 14032 Chernigov, Ukraine.
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The present paper was initiated by the growing importance of the multi-component and
matrix integrable equations and their explicit solutions. An interesting class of the real
non-singular and rationally decaying KP I solutions was constructed and studied in [1] (see
also [30]). Here we construct and study multi-parameter explicit solutions of the matrix KP
equations. A class of the rational non-singular self-adjoint (real in the scalar case) solutions
is included. The corresponding wavefunctions (eigenfunctions of the matrix non-stationary
Schrödinger equation) are also constructed. In particular, the formulae prove useful for
the understanding of the connections between matrix identities and KP solutions actively
investigated in the last few years [4, 14, 16, 31]. Several results are new in the scalar case. The
constructed rational non-singular self-adjoint solutions depend generically on the polynomial
in x, t, y and its conjugate, i.e. on the two real variables, although a more complicated example
is treated also. The scalar solutions obtained in the interesting paper [14] are included as a
subclass (see remark 2.6).

The version of the BDT that we are going to apply was initially developed in [25, 26].
We can find various applications of this method to the spectral theory and nonlinear equations
in [27, 28] and [12] (see more references in these papers).

In section 2 a version of the BDT for the matrix KP equation is introduced and applied
to the construction of the explicit up to the matrix exponents solutions. The self-adjoint
non-singular solutions of KP I are studied in section 3. A subclass of the rationally decaying
self-adjoint non-singular solutions is considered in section 4, and section 5 contains the
conclusion.

2. BDT for the matrix KP

We can easily check that, supposing uxy = uyx , the matrix KP equation (1.1) is equivalent to
the equations [L1,K1] = 0 and [L2,K2] = 0, where [L,K] := LK − KL,

L1 := ∂

∂x
+ α

(
0 0
Im 0

)
∂

∂y
−

(
0 Im

u 0

)

K1 := ∂

∂t
+ 4α2

(
0 0
Im 0

)
∂2

∂y2
− 2α

(
0 2Im

u 0

)
∂

∂y
+

(
αω + ux −2u

uxx − αuy − 2u2 αω − ux

)
(2.1)

L2 := ∂2

∂x2
+ α

∂

∂y
− u K2 := ∂

∂t
+ 4

∂3

∂x3
− 6u

∂

∂x
− 3ux + αω (2.2)

where Im is the m × m identity matrix, and Lp = Lp(α, u, ω),Kp = Kp(α, u, ω). The
auxiliary pair L2,K2 is traditionally used in the study of the KP equation but we need to
double the order of the auxiliary systems (and use the pair L1,K1) to apply the approach of
[25, 26, 28]. Next we introduce N × 2m matrix functions � and � by the equations

L1�(x, t, y)∗ = 0 K1�(x, t, y)∗ = 0
(2.3)

Ld�(x, t, y)∗ = 0 Kd�(x, t, y)∗ = 0

where the dual differential expressions Ld and Kd take the form

Ld = JL1(−α∗, u∗, ω∗)J Kd = JK1(−α∗, u∗, ω∗)J J = i

(
0 Im

−Im 0

)
(2.4)

and u∗ denotes the conjugate transpose of u (conjugate in the scalar case). Thus, � is an
eigenfunction of the auxiliary and � is an eigenfunction of the dual systems. Similar to the
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binary BDT (see [1, 21] and references therein) we use both auxiliary and dual systems. We
denote by �p(p = 1, 2) and �p(p = 1, 2) the N × m blocks of � and � respectively, i.e. we
define �p and �p by the equalities � = [�1 �2] and � = [�1 �2]. Now we introduce the
N × N matrix function S(x, t, y) by its derivatives

Sy = ��∗ Sx = −α�2�
∗
1

(2.5)
St = 2α(2�1�

∗
2 + �2u�∗

1 ) + 4α2(�2y�
∗
1 − �2�

∗
1y).

Matrix functions S,� and � are analogues of the operators from the Lev Sakhnovich S-
node [29], while the corresponding matrix identity from [28, 29] takes the form Sy = ��∗.
Supposing �∗

1xy = �∗
1yx , formula (2.3) and definition (2.2) yield

L2(α, u, ω)�1(x, t, y)∗ = 0 K2(α, u, ω)�1(x, t, y)∗ = 0 (2.6)

and, if u and ω satisfy matrix KP equation, then �∗
1 is a wavefunction of this matrix KP

equation. The BDT for the non-stationary Schrödinger equation L2�
∗
1 = 0 is of interest in

itself [1, 3, 24]. Furthermore, we suppose that

uxy = uyx �∗
1xy = �∗

1yx �∗
1yxx = �∗

1xxy

�∗
1xyx = �∗

1xxy �∗
1xt = �∗

1tx �2xy = �2yx (2.7)

�2yxx = �2xxy �2xyx = �2xxy �2xt = �2tx .

In view of equations (2.3), (2.5) and (2.6) by direct calculation using non-commutative algebra
packages [22] we can obtain the result for our version of BDT (generalized BDT (GBDT)
by [28]).

Theorem 2.1. Suppose u and ω satisfy the matrix KP equation, and �,� and S satisfy
equations (2.3), (2.5) and (2.7). Then, in the points of invertibility of the S matrix functions ũ

and ω̃ given by the relations

ũ(x, t, y) := u(x, t, y) + 2αXx(x, t, y)

ω̃(x, t, y) := ω(x, t, y) + 6αXy(x, t, y) (2.8)

X(x, t, y) := �1(x, t, y)∗S(x, t, y)−1�2(x, t, y)

satisfy the matrix KP equation as well. Moreover, �̃∗
1 := �∗

1 S−1 is a wavefunction of
this matrix KP equation, i.e., L2(α, ũ, ω̃)�̃∗

1 = 0 and K2(α, ũ, ω̃) �̃∗
1 = 0.

Remark 2.2. From equation (2.3) we can easily see that, if u ≡ u∗, ω ≡ ω∗ and α = −α∗, then
we can put � = �J . In this way, setting at some fixed point S(x0, t0, y0) = S(x0, t0, y0)

∗, we
obtain S(x, t, y) ≡ S(x, t, y)∗. So according to equation (2.8) we have ũ ≡ ũ∗ and ω̃ ≡ ω̃∗.

When u = ω = 0 we can construct � and � satisfying equation (2.3) explicitly. (The
way in which operator � was constructed in [19] can be used, in particular.) The simplest
expressions can be obtained on the matrix exponents level. In the next theorem we also
construct explicitly the matrix function S.

Theorem 2.3. Fix integers n � N > 0. Choose seven parameter matrices: n × n matrices
A and Â; N × n matrix B1 and n × m matrix B2; m × n matrix B̂1, n × N matrix B̂2, and
N × N matrix C. Let R satisfy the matrix identity

AR + RÂ = −αB2B̂1. (2.9)

Then the matrix functions

�1(x, t, y)∗ = B̂1 exp(xÂ − α−1yÂ 2 − 4tÂ 3)B̂2 (2.10)
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�2(x, t, y) = B1 exp(xA + α−1yA2 − 4tA3)B2 (2.11)

�2(x, t, y) = �1x(x, t, y) �1(x, t, y) = −�2x(x, t, y) (2.12)

and

S(x, t, y) = B1 exp(xA + α−1yA2 − 4tA3)R exp(xÂ − α−1yÂ 2 − 4tÂ 3)B̂2 + C (2.13)

satisfy equations (2.3) and (2.5) and provide via equation (2.8) the explicit solutions of the
matrix KP equation.

If the entries of the parameter matrices are real (and α = ±1), we obtain real-valued solutions
of the matrix KP II.

Remark 2.4. Under the conditions of theorem 2.3, we can assume without loss of generality
that A and Â have Jordan form.

When α = ±i, A = diag{θl1, θ l2, . . . , θ ln}, and Â = diag{θ̂ l1, θ̂ l2, . . . , θ̂ ln} (θ = −θ∗;
l1, . . . , ln, l̂1, . . . , l̂n ⊂ Z), then ũ and ω̃ are periodic in x, t, y solutions of the matrix KP I. If
C = 0, σ (A) = µ0, and σ(Â) = µ̂0, where σ means spectrum, then ũ and ω̃ are rational (see
corollary 4.1).

Remark 2.5. In the scalar case we have m = 1, and the right-hand side of equation (2.9) is
of rank 1. KP equation solutions and τ -functions generated by the identities of the type (2.9)
(with rank 1 right-hand side) have been considered in the interesting paper [16].

Remark 2.6. When n = N and B1 = B̂2 = In, then according to equations (2.8) and
(2.10)–(2.13) we obtain

X(x, t, y) = B̂1(R + eA(x, t, y)−1CeÂ(x, t, y)−1)−1B2 (2.14)

where eA(x, t, y) = exp(xA + α−1yA2 − 4tA3). If we assume additionally that m = 1, C =
2αIn, and matrices A and Â commute, we obtain the class of solutions introduced recently in
[14] (compare equations (2.8) and (2.14) with formulae (2) and (7) in [14]).

3. Explicit self-adjoint solutions of the matrix KP I

Corollary 3.1. If α = −α∗, B1 = B̂ ∗
2 , Â = A∗, B2 = iB̂∗

1, C = C∗, and R = R∗, then the
solutions of the matrix KP equation constructed in theorem 2.3 are self-adjoint: ũ = ũ∗ and
ω̃ = ω̃∗.

For the case α = −α∗ we put without loss of generality α = i and rewrite equation (1.1) in
the matrix KP I form:

ut + uxxx − 3(uux + uxu) − ωy = i(uω − ωu) ωx = 3uy (3.1)

Under the assumptions of corollary 3.1 formulae (2.9)–(2.13) take the form

AR + RA∗ = B2B
∗
2 R = R∗ (3.2)

�2(x, t, y) = i�1(x, t, y) = B1eA(x, t, y)B2 (3.3)

�1(x, t, y) = −�2x(x, t, y) = −i�2(x, t, y) (3.4)

S(x, t, y) = B1eA(x, t, y)ReA(x, t, y)∗B∗
1 + C (3.5)
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where eA(x, t, y) = exp(xA − iyA2 − 4tA3). According to equation (2.8) the matrix KP I
solutions are given by the equalities

ũ(x, t, y) = 2iXx(x, t, y) ω̃(x, t, y) = 6iXy(x, t, y) (3.6)

X(x, t, y) = �1(x, t, y)∗S(x, t, y)−1�2(x, t, y). (3.7)

In view of equations (3.2)–(3.6) without loss of generality we can assume that A has the Jordan
form (recall remark 2.4).

Example 3.2. Suppose m = 1, n = 2, A is a Jordan cell

A =
(

µ0 1
0 µ0

)
B2 =

(
b1

b2

)
C =

(
0 c

c∗ d

)
(C = C∗). (3.8)

By the first relation in equation (3.8) for R = {rkj }2
k,j=1 we obtain

AR + RA∗ = κR +

(
r21 + r12 r22

r22 0

)
κ := µ0 + µ∗

0. (3.9)

From the definition of A we also obtain

eA(x, t, y) = exp
(
µ0x − iµ2

0y − 4µ3
0t

)
× exp

{
(A − µ0I2)

(
xI2 − iy(A + µ0I2) − 4t

(
A2 + µ0A + µ2

0I2
))}

= exp
(
µ0x − iµ2

0y − 4µ3
0t

) [
I2 +

(
0 x − 2iµ0y − 12µ2

0t

0 0

)]
. (3.10)

Consider the case κ = µ0 + µ∗
0 = 0, b1 = 1, b2 = 0, and B1 = I2. In view of B1 = I2

formulae (3.2)–(3.5) yield a skew-self-adjoint case of equation (2.14)

X(x, t, y) = iB∗
2 (R + eA(x, t, y)−1C(eA(x, t, y)−1)∗)−1B2. (3.11)

Taking into account equations (3.10) and (3.11) we have

X(x, t, y) = iB∗
2

(
R + |e(µ0, x, t, y)|−2

[
I2 −

(
0 P(x, t, y)

0 0

) ]

× C

[
I2 −

(
0 P(x, t, y)

0 0

) ]∗)−1

B2 (3.12)

where

e(µ0, x, t, y) = exp
(
µ0x − iµ2

0y − 4µ3
0t

)
P(x, t, y) = x − 2iµ0y − 12µ2

0t . (3.13)

(The same polynomial P has appeared already in [1].) As κ = 0, by equations (3.2) and (3.9)
it follows that

R =
(

r0 r1

r∗
1 0

)
r0 = r∗

0 r1 + r∗
1 = 1. (3.14)

Notice that if κ = 0, then |e(µ0, x, t, y)| = 1. From equations (3.6), (3.12) and (3.14) by the
standard calculations we now obtain

X(x, t, y) = id
(
r2 + d

(
x − 2iµ0y − 12µ2

0t
))−1

(r2 = dr0 − |r1 + c|2)
(3.15)

ũ(x, t, y) = 2d2 (
r2 + d

(
x − 2iµ0y − 12µ2

0t
))−2

ω̃ = −6iµ0ũ.

Suppose that σ(iA) ⊂ C+, where σ means spectrum and C+ is the open upper half-plane. It
is well known that in this case equation (3.2) has a unique solution:

R = 1

2π

∫ +∞

−∞
(λIn − iA)−1B2B

∗
2 (λIn + iA∗)−1 dλ. (3.16)
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The transformations A → −A,C → −C yield transformations X(x, t, y) →
−X(−x,−t, y), ũ(x, t, y) → ũ(−x,−t, y), and ω̃(x, t, y) → −ω̃(−x,−t, y). Therefore
we do not need to consider the case σ(iA) ⊂ C− separately.

We introduce a definition from the system theory:

Definition 3.3. A pair A,B2 that satisfies the equality span
⋃n−1

l=0 Im AlB2 = C
n (Im denotes

image) is called full range or controllable.

If σ(iA) ⊂ C+ and the pair A,B2 is full range, then according to equation (3.16) the solution
of equation (3.2) is strictly positive: R > 0, i.e. f ∗Rf > 0 for any f ∈ C

n, f �= 0. Hence in
view of corollary 3.1 we obtain

Proposition 3.4. Suppose that σ(iA) ⊂ C+, the pair A,B2 is full range, rankB1 = N , and
C � 0. Then S(x, t, y) given by equation (3.5) is strictly positive and therefore invertible. So
the matrix KP I (3.1) solutions ũ and ω̃ given by equations (3.2)–(3.6) are non-singular.

In the next example the solutions are non-singular.

Example 3.5. Let the parameter matrices A,B2 and C have the form (3.8) and put B1 = I2

(n = N = 2). This time we put b1 = 0, b2 = 1, and therefore the pair A,B2 is full range.
Suppose that c = 0, d > 0, i.e. C � 0, and that κ = µ0 + µ∗

0 > 0. So all the conditions of the
proposition 3.4 are fulfilled. From equation (3.9) it follows now that

R = κ−1

(
2κ−2 −κ−1

−κ−1 1

)
. (3.17)

We sometimes omit the variables x, t, y in our further calculations. Using equations (3.12)
and (3.17) we have

X = iZ1/Z2 Z1 = 2κ−3 + d|e(µ0)|−2|P |2
(3.18)

Z2 = κ−4 + κ−1d|e(µ0)|−2(|P |2 − κ−1(P + P ∗) + 2κ−2).

Taking into account equation (3.13) we easily obtain the derivatives with respect to x:

Z′
1 = −κ(Z1 − 2κ−3) + d|e(µ0)|−2(P + P ∗)

Z′
2 = −κ(Z2 − κ−4) + κ−1d|e(µ0)|−2(P + P ∗ − 2κ−1).

Hence we have

Z′
1Z2 − Z′

2Z1 = 2κ−2Z2 − κ−3Z1 + 2κ−2d|e(µ0)|−2Z1

+ d|e(µ0)|−2(P + P ∗)(Z2 − κ−1Z1).

Finally in view of equations (3.6) and (3.18) we obtain

ũ = −2d|e(µ0)|−2

Z2
2

(
8κ−5 − 3κ−4(P + P ∗) + κ−3(|P |2 + 2d|e(µ0)|−2(P + P ∗))

+ κ−2d|e(µ0)|−2(2|P |2 − (P + P ∗)2)
)
. (3.19)

The wavefunction in our case is given by the formula

�∗
1 S−1 = i

e(µ0)Z2
(κ−2 + d|e(µ0)|−2P ∗ 2κ−3 − κ−2P). (3.20)

Notice that the second entry of �∗
1 S−1 in equation (3.20) decays exponentially when |x| → ∞

while the first entry grows exponentially when x → −∞. When C > 0 the situation is
different.
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Proposition 3.6. Let the conditions of proposition 3.4 hold, and suppose that C > 0. Then
the columns of the KP I wavefunction �̃∗

1 = �∗
1 S−1 are square summable in x (belong to

L2(−∞,∞)).

Proof. According to equations (2.5) and (3.3) we have Sx = �1�
∗
1 . Therefore we obtain∫ l

−l

(S(x, t, y)−1)�1(x, t, y)�1(x, t, y)∗S(x, t, y)−1 dx

= (S(−l, t, y)−1 − S(l, t, y)−1) � C−1.

The statement of the proposition is immediate. �

4. Rational solutions of the matrix KP

When C = 0, a corollary of theorem 2.3 and proposition 3.4 follows:

Corollary 4.1.

(i) Let R,�1,�2, and S be defined by equations (2.9)–(2.11) and (2.13), where σ(A) =
µ0, σ (Â) = µ̂0, and C = 0. Then the matrix KP equation solutions ũ and ω̃ are rational
in x, t, y.

(ii) Let R,�1,�2, and S be defined by equations (3.2), (3.3) and (3.5). Suppose that
σ(iA) = λ0 ∈ C+, the pair A,B2 is full range, rankB1 = N (N < n), and C = 0.
Then the KP I solutions ũ and ω̃ given by equations (3.6) and (3.7) are self-adjoint, non-
singular, and rational in x, t , and y. Moreover, the wavefunction �∗

1 S−1 is the product of
the scalar multiple e(−iλ0, x, t, y) defined in equation (3.13) and the rational multiple.

Proof. First we prove statement (i). Notice that

e(µ0, x, t, y)−1eA(x, t, y) = exp{A1(µ0)x + A2(µ0)y + A3(µ0)t)} (4.1)

where (compare with the first equality in equation (3.10))

A1(µ0) = A − µ0In A2(µ0) = −i(A2 − µ2
0In) A3(µ0) = −4

(
A3 − µ3

0In

)
i.e., A1, A2, and A3 are nilpotent matrices. (Recall that A is called nilpotent if Ak = 0 for
some k � 0.) In the same way we obtain

e(µ̂0, x, t, y)−1eÂ(x, t, y) = exp{Â1(µ̂0)x + Â2(µ̂0)y + Â3(µ̂0)t)} (4.2)

where Â1, Â2 and Â3 are nilpotent. Therefore, the right-hand sides of equations (4.1) and
(4.2) are rational. Hence, taking into account that C = 0 we derive from equations (2.10),
(2.11), (2.13) and (2.8) that X is rational. Using equation (2.8) the matrix functions ũ and ω̃

are rational as well.
Let us now prove part (ii) of the corollary. The rationality of ũ and ω̃ follows from part (i).

The self-adjointness and regularity of the solutions follows from corollary 3.1 and proposition
3.4, respectively. Finally, according to equations (3.3), (3.5) and (4.1), e(−iλ0)

−1�∗
1 S−1 is

rational. �

Furthermore, we study the rational non-singular solutions described in part (ii) of the corollary.
In the scalar case, this type of multi-lump solution has been considered in [1]. The problem
of the existence of slowly decaying non-singular solutions in the case of one space variable is
of interest also (see the discussion in [20] and references therein). Notice that if C = 0 and
n = N we obtain only trivial solutions.
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Example 4.2. Let A and B2 be given by equation (3.8), where b1 = 0, b2 = 1, and κ > 0
again. Put C = 0, N = 1, and B1 = (1 1). In this way, all the conditions of corollary 4.1
part (ii) are fulfilled. From equations (3.5) and (3.10) we obtain

S = |e(µ0)|2B1

[
I2 +

(
0 P

0 0

)]
R

[
I2 +

(
0 p

0 0

)]∗
B∗

1 . (4.3)

As A and B2 coincide with the corresponding matrices from example 3.5, the matrix R is given
by equation (3.17). Using equations (3.17) and (4.3) we easily calculate

S = κ−1|e(µ0)|2(2κ−2 − κ−1(P + P ∗ + 2) + |P + 1|2). (4.4)

From equations (3.3), (3.7) and (4.4) we derive

X = iκ |P + 1|2
2κ−2 − κ−1(P + P ∗ + 2) + |P + 1|2 . (4.5)

Finally the lump solution ũ takes the form

ũ = 2[(P + 1)2 + (P ∗ + 1)2 − 2κ−1(P + P ∗ + 2)]

(2κ−2 − κ−1(P + P ∗ + 2) + |P + 1|2)2
. (4.6)

Consider now a simple matrix lump solution.

Example 4.3. In this example we take the same matrices A,B1 and C = 0 as in the previous
example 4.2 and put m = 2, B2 = I2. According to equations (3.2) and (3.9) the entries
r12, r21 and r22 of R coincide with the corresponding entries in the previous example (see
equation (3.17)) but we have r11 = κ−1 + 2κ−3. Therefore, equation (4.3) now yields

S = κ−1|e(µ0)|2(1 + 2κ−2 − κ−1(P + P ∗ + 2) + |P + 1|2). (4.7)

Analogously to example 4.2 we obtain

X = iκ

1 + 2κ−2 − κ−1(P + P ∗ + 2) + |P + 1|2
(

P ∗ + 1
1

)
(1 P + 1). (4.8)

Recall that ũ = 2iXx, ω̃ = 6iXy .

It has already been mentioned that without loss of generality we can assume that A has the
Jordan form. Therefore, under the conditions of corollary 4.1 the nontrivial generic case of
the rational multi-lump solutions corresponds to the block diagonal 2l × 2l matrix A with the
2 × 2 Jordan cells:

A = A(µ0) = diag{a, . . . , a} a =
(

µ0 1
0 µ0

)
(κ = µ0 + µ∗

0 > 0). (4.9)

Put D(P) = I2l + PA(0). The matrix function X now takes the form

X = iB∗
2 D(P)∗B∗

1 (B1D(P)RD(P)∗B∗
1 )−1B1D(P)B2. (4.10)

Remark 4.4. In the generic case (4.10) as well as in the examples (4.5) and (4.8) we have
X(x, t, y) = X̃(P, P ∗), where P(x, t, y) = x−2iµ0y−12µ2

0t . (Up to a constant P coincides
with f in [1].) Thus we obtain

ũ(x, t, y) = 2i(X̃P (P, P ∗) + X̃P ∗(P, P ∗))
ω̃(x, t, y) = 12(µ0X̃P (P, P ∗) − µ∗

0X̃P ∗(P, P ∗)). (4.11)

In other words ũ and ω̃ depend on the two real variables: real and imaginary parts of P.
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The asymptotics of the generic solutions follows from equation (4.11) and the next proposition
is easily derived from equation (4.10).

Proposition 4.5. Suppose det B1A(0)RA(0)∗B∗
1 �= 0. Then the asymptotics of the derivatives

of the matrix function X̃ defined in remark 4.4 is given by

X̃P (P, P ∗) = i

P 2
K∗

1 K−1
2

(
K3K

−1
2 K1 − B1B2

)
+ O

(
1

|P |3
)

(|P | → ∞) (4.12)

X̃P ∗(P, P ∗) = i

(P ∗)2

(
K∗

1 K−1
2 K∗

3 − B∗
2 B∗

1

)
K−1

2 K1 + O

(
1

|P |3
)

(|P | → ∞) (4.13)

where

K1 = B1A(0)B2 K2 = B1A(0)RA(0)∗B∗
1 K3 = B1RA(0)∗B∗

1 .

If A contains 3 × 3 Jordan cells, then we can no longer present ũ as a function of P and P ∗.

Example 4.6. Suppose m = 2, N = 1, n = 3, B1 = (1 0 0), A is a 3 × 3 Jordan cell:

A =

µ0 1 0

0 µ0 1
0 0 µ0


 (κ = µ0 + µ∗

0 > 0) B2 =
(

0
I2

)
. (4.14)

Similar to equation (3.10) we obtain

eA(x, t, y) = e(µ0) exp
{
(A − µ0I3)

(
xI3 − iy(A + µ0I3) − 4t

(
A2 + µ0A + µ2

0I3
))}

= e(µ0)


I3 +


0 1 0

0 0 1
0 0 0


 (

xI3 − iy(A + µ0I3) − 4t
(
A2 + µ0A + µ2

0I3
))

+


0 0 1

0 0 0
0 0 0


 (

xI3 − iy(A + µ0I3) − 4t
(
A2 + µ0A + µ2

0I3
))2


 .

Simple calculations now yield

eA = e(µ0)


1 P Q

0 1 P

0 0 1


 (4.15)

where Q(x, t, y) = 1
2P(x, t, y)2 − iy − 12µ0t . From equations (3.3) and (4.15) it follows

that

B1eA = e(µ0)(1 P Q) �2 = i�1 = e(µ0)(P Q). (4.16)

Using equations (3.5) and (4.16) we obtain

S = |e(µ0)|2(1 P Q)R(1 P Q)∗. (4.17)

Finally according to equations (4.16) and (4.17) we obtain

X = i

(1 P Q)R(1 P Q)∗

(
P ∗

Q∗

)
(P Q). (4.18)

To construct R in equation (4.18) we derive from equation (3.2) and a relation similar to
equation (3.9) the equality

κR +


r21 + r12 r22 + r13 r23

r31 + r22 r32 + r23 r33

r32 r33 0


 = diag{0, 1, 1}. (4.19)
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Using equation (4.19) we have r33 = κ−1, r23 = r32 = −κ−2, r31 = r13 = κ−3, r22 =
2κ−3 + κ−1, r21 = r12 = −κ−2 − 3κ−4, r11 = 2(κ−3 + 3κ−5). Now formulae (3.6) and (4.18)
express ũ and ω̃ via polynomials P and Q.

5. Conclusion

Thus, the GBDT and various matrix and operator identities prove fruitful for the construction
of the matrix KP equation solutions. A notion from the system theory has been used for
the construction of the non-singular solutions. (See also the representation of the Darboux
matrix in the form of the transfer matrix function from the system theory in [25–28].) The
solutions obtained in this way can be treated as a type of soliton–multi-lump interaction, and
a subclass of the slowly decaying self-adjoint non-singular rational matrix KP I solutions is
included. This subclass corresponds to the parameter matrix A with a single eigenvalue. Some
developments of the important paper [1] have been achieved. The generic case of the block
diagonal A consisting of the 2 × 2 Jordan cells has been studied. In this case ũ and ω̃ depend
on the polynomials P and P ∗ (

P(x, t, y) = x − 2iµ0y − 12µ2
0t

)
, and the asymptotics of ũ

and ω̃ when |P | → ∞ is described. Finally, an example of the 3 × 3 Jordan cell A has been
treated.
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stationary Schrödinger equation Proc. Steklov Inst. Math. 226 42–62

[4] Carl B and Schiebold C 1999 Nonlinear equations in soliton physics and operator ideals Nonlinearity 12 333–64
[5] Casati P, Falqui G, Magri F, Pedroni M and Zubelli J P 1998 Darboux transformations and Darboux coverings:

some applications to the KP hierarchy Math. Contemp. 15 45–65
[6] Chudnovsky D V 1980 The generalized Riemann–Hilbert problem and the spectral interpretation Lect. Notes

Phys. 120 103–49
[7] Cascaval R C, Gesztesy F, Holden H and Latushkin Yu 2002 Spectral analysis of Darboux transformations for

the focusing NLS hierarchy Preprint nlin/0210072
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